8,835 research outputs found

    The One-Loop H^2R^3 and H^2(DH)^2R Terms in the Effective Action

    Full text link
    We consider the one-loop B^2h^3 and B^4h amplitudes in type II string theory, where B is the NS-NS two-form and h the graviton, and expand to lowest order in alpha'. After subtracting diagrams due to quartic terms in the effective action, we determine the presence and structure of both an H^2R^3 and H^2(DH)^2R term. We show that both terms are multiplied by the usual (t_8t_8\pm{1/8}\epsilon_{10}\epsilon_{10}) factor.Comment: 20 pages, 3 figures; corrected typo

    Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis

    Get PDF
    Phagocytosis and receptor-mediated endocytosis are vitally important particle uptake mechanisms in many cell types, ranging from single-cell organisms to immune cells. In both processes, engulfment by the cell depends critically on both particle shape and orientation. However, most previous theoretical work has focused only on spherical particles and hence disregards the wide-ranging particle shapes occurring in nature, such as those of bacteria. Here, by implementing a simple model in one and two dimensions, we compare and contrast receptor-mediated endocytosis and phagocytosis for a range of biologically relevant shapes, including spheres, ellipsoids, capped cylinders, and hourglasses. We find a whole range of different engulfment behaviors with some ellipsoids engulfing faster than spheres, and that phagocytosis is able to engulf a greater range of target shapes than other types of endocytosis. Further, the 2D model can explain why some nonspherical particles engulf fastest (not at all) when presented to the membrane tip-first (lying flat). Our work reveals how some bacteria may avoid being internalized simply because of their shape, and suggests shapes for optimal drug delivery.Comment: 18 pages, 5 figure

    A multistage linear array assignment problem

    Get PDF
    The implementation of certain algorithms on parallel processing computing architectures can involve partitioning contiguous elements into a fixed number of groups, each of which is to be handled by a single processor. It is desired to find an assignment of elements to processors that minimizes the sum of the maximum workloads experienced at each stage. This problem can be viewed as a multi-objective network optimization problem. Polynomially-bounded algorithms are developed for the case of two stages, whereas the associated decision problem (for an arbitrary number of stages) is shown to be NP-complete. Heuristic procedures are therefore proposed and analyzed for the general problem. Computational experience with one of the exact problems, incorporating certain pruning rules, is presented with one of the exact problems. Empirical results also demonstrate that one of the heuristic procedures is especially effective in practice

    The mechanism of phagocytosis: two stages of engulfment

    Get PDF
    Despite being of vital importance to the immune system, the mechanism by which cells engulf relatively large solid particles during phagocytosis is still poorly understood. From movies of neutrophil phagocytosis of polystyrene beads, we measure the fractional engulfment as a function of time and demonstrate that phagocytosis occurs in two distinct stages. During the first stage, engulfment is relatively slow and progressively slows down as phagocytosis proceeds. However, at approximately half-engulfment, the rate of engulfment increases dramatically, with complete engulfment attained soon afterwards. By studying simple mathematical models of phagocytosis, we suggest that the first stage is due to a passive mechanism, determined by receptor diffusion and capture, whereas the second stage is more actively controlled, perhaps with receptors being driven towards the site of engulfment. We then consider a more advanced model that includes signaling and captures both stages of engulfment. This model predicts that there is an optimum ligand density for quick engulfment. Further, we show how this model explains why non-spherical particles engulf quickest when presented tip-first. Our findings suggest that active regulation may be a later evolutionary innovation, allowing fast and robust engulfment even for large particles.Comment: 21 pages, 7 figure

    A detailed study on understanding glycopolymer library and Con A interactions

    Get PDF
    Synthetic glycopolymers are important natural oligosaccharides mimics for many biological applications. To develop glycopolymeric drugs and therapeutic agents, factors that control the receptor-ligand interaction need to be investigated. A library of well-defined glycopolymers has been prepared by the combination of copper mediated living radical polymerization and CuAAC click reaction via post-functionalization of alkyne-containing precursor polymers with different sugar azides. Employing Concanavalin A as the model receptor, we explored the influence of the nature and densities of different sugars residues (mannose, galactose, and glucose) on the stoichiometry of the cluster, the rate of the cluster formation, the inhibitory potency of the glycopolymers, and the stability of the turbidity through quantitative precipitation assays, turbidimetry assays, inhibitory potency assays, and reversal aggregation assays. The diversities of binding properties contributed by different clustering parameters will make it possible to define the structures of the multivalent ligands and densities of binding epitopes tailor-made for specific functions in the lectin-ligand interaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2588–259

    Testosterone Influence on Gene Expression in Lacrimal Glands of Mouse Models of Sjögren Syndrome

    Get PDF
    Purpose: Sjögren syndrome is an autoimmune disorder that occurs almost exclusively in women and is associated with extensive inflammation in lacrimal tissue, an immune-mediated destruction and/or dysfunction of glandular epithelial cells, and a significant decrease in aqueous tear secretion. We discovered that androgens suppress the inflammation in, and enhance the function of, lacrimal glands in female mouse models (e.g., MRL/MpJ-Tnfrsf6lpr [MRL/lpr]) of Sjögren syndrome. In contrast, others have reported that androgens induce an anomalous immunopathology in lacrimal glands of nonobese diabetic/LtJ (NOD) mice. We tested our hypothesis that these hormone actions reflect unique, strain- and tissue-specific effects, which involve significant changes in the expression of immune-related glandular genes. Methods: Lacrimal glands were obtained from age-matched, adult, female MRL/lpr and NOD mice after treatment with vehicle or testosterone for up to 3 weeks. Tissues were processed for analysis of differentially expressed mRNAs using CodeLink Bioarrays and Affymetrix GeneChips. Data were analyzed with bioinformatics and statistical software. Results: Testosterone significantly influenced the expression of numerous immune-related genes, ontologies, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in lacrimal glands of MRL/lpr and NOD mice. The nature of this hormone-induced immune response was dependent upon the autoimmune strain, and was not duplicated within lacrimal tissues of nonautoimmune BALB/c mice. The majority of immune-response genes regulated by testosterone were of the inflammatory type. Conclusions: Our findings support our hypothesis and indicate a major role for the lacrimal gland microenvironment in mediating androgen effects on immune gene expression

    Induced Innovation and Social Inequality: Evidence from Infant Medical Care

    Get PDF
    We develop a model of induced innovation where research effort is a function of the death rate, and thus the potential to reduce deaths in the population. We also consider potential social consequences that arise from this form of induced innovation based on differences in disease prevalence across population subgroups (i.e. race). Our model yields three empirical predictions. First, initial death rates and subsequent research effort should be positively correlated. Second, research effort should be associated with more rapid mortality declines. Third, as a byproduct of targeting the most common conditions in the population as a whole, induced innovation leads to growth in mortality disparities between minority and majority groups. Using information on infant deaths in the U.S. between 1983 and 1998, we find support for all three empirical predictions. We estimate that induced innovation predicts about 20 percent of declines in infant mortality over this period. At the same time, innovation that occurred in response to the most common causes of death favored the majority racial group in the U.S., whites. We estimate that induced innovation contributed about one third of the rise in the black-white infant mortality ratio during our period of study.
    • …
    corecore